You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
incubator_embeded/HARDWARE/PID.c

238 lines
6.1 KiB

#include "PID.h"
#include "Relays.h"
#include "USART.h"
#include "rs485.h"
extern u16 tem;
float cold_tem = 0;
float red_tem = 0;
float ti;
float ki = 0.001;
float kd = 340;
extern u8 hot_clod_flag;
extern u8 gpio_state;
extern int T;
unsigned int num = 0;
PID pid;
int min_speed_count = 1500;
int max_speed_count = 6000;
void PID_Init()
{
// pid.set_tem=tem;// user set temperature
// if flash have not a vaild value, just set a default value
if (pid.Kp < 1e-7) { pid.Kp = 9.6; }
if (pid.Ki < 1e-7) { pid.Ki = 0.01; }
if (pid.Kd < 1e-7) { pid.Kd = 340; }
if (pid.tem_threshold < 0.0001) { pid.tem_threshold = 0.2; }
pid.t = 5000; // PID calc period
// pid.Ti=5000000;// integral time
// pid.Td=1000;// differential time
pid.pwmcycle = 200; // pwm cycle 200
pid.OUT0 = 1;
pid.C1ms = 0;
}
/**
* set compressor speed count
* range of speed count: 0-6000, if speed count lower than 1500, the compressor will stop
*/
void set_compressor_power(int speed) {
u8 data[8] = {0x01, 0x06, 0x60, 0x00, 0x00, 0x09, 0xBB, 0xAA}; // speed control for compressor controller
if (speed > 6000) {
speed = 6000;
}
if (speed < 0) {
speed = 0;
}
data[4] = speed / 256;
data[5] = speed % 256;
GetCRC16(data, 6, data + 6, data + 7);
RS485_3_Init(9600);
RS485_3_Send_Data(data, 8);
delay_xms(30);
RS485_1_Init(9600);
}
/**
* set heater percent
* range of heater percent: 0-100
*/
void set_heater_power(int percent) {
u8 data[8] = { 0x10, 0x06, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 };
if (percent > 100) {
percent = 100;
}
if (percent < 0) {
percent = 0;
}
data[4] = percent / 256;
data[5] = percent % 256;
GetCRC16(data, 6, data + 6, data + 7);
RS485_1_Send_Data(data, 8);
delay_xms(30);
}
/**
* heater power calc
*/
int calc_p(float t_t, float t_c, float error, int p_b, float pid_p, float pid_i) {
int p = p_b + pid_p * (t_t - t_c) + pid_i * error;
if (p > 100) {
return 100;
}
if (p < 0) {
return 0;
}
return p;
// int p_b = 52;
// if (t_t - t_c > 5) {
// return 100;
// }
// if (t_t - t_c < 5 && t_t > t_c) {
// return p_b + (t_t - t_c) * (100 - p_b) / 5;
// }
// if (t_t <= t_c) {
// return p_b;
// }
// return 0;
}
void PID_Calc() // pid calc
{
pid.set_tem = 25;
pid.Kp = 19.2;
pid.Ki = 0.02;
int p_base = 52;
float DelEk; // The difference between the last two deviations
// float td;
float out;
if (pid.C1ms < (pid.t)) // The calculation cycle has not yet arrived
{
return;
}
// if (pid.set_tem > pid.now_tem)
// {
// pid.Ek = pid.set_tem - pid.now_tem;
// }
// else
// {
// pid.Ek = pid.now_tem - pid.set_tem;
// }
// pid.Ek = pid.now_tem - pid.set_tem;
pid.Ek = pid.set_tem - pid.now_tem;
pid.Pout = pid.Kp * pid.Ek; // Proportional output
pid.SEk += pid.Ek; // Total historical deviation
DelEk = pid.Ek - pid.Ek_1; // The difference between the last two deviations
// ti=pid.t/pid.Ti;
// ki=ti*pid.Kp;
pid.Iout = pid.Ki * pid.SEk; // integral output
// td=pid.Td/pid.t;
// kd=pid.Kp*td;
pid.Dout = pid.Kd * DelEk; // difference output
if (pid.Dout < 0)
{
pid.Dout = 0 - pid.Dout;
}
// out= pid.Pout+pid.Iout+ pid.Dout;
out = pid.Pout;
if (out > pid.pwmcycle)
{
pid.OUT = pid.pwmcycle;
}
else if (out <= 0)
{
pid.OUT = pid.OUT0;
}
else
{
pid.OUT = out;
}
pid.Ek_1 = pid.Ek; // udpate difference
pid.C1ms = 0;
// heater percent
int heater_percent = calc_p(pid.set_tem, pid.now_tem, pid.SEk, p_base, pid.Kp, pid.Ki);
// TODO:: temply, set Kd to heater_percent, use for data upload
pid.Kd = heater_percent;
// speed count
// int speed_count = pid.OUT / 200.0 * (max_speed_count - min_speed_count) + min_speed_count;
// if (speed_count > 6000) {
// speed_count = 6000;
// }
int speed_count = 1500;
// if (pid.now_tem < pid.set_tem + pid.tem_offset - pid.tem_threshold)
// {
// // Obtain the current deviation value
// // when the target temperature is 1 degree Celsius higher than the actual temperature, heat up
// // close compressor open heater
// /*GPIO1->Alarm bell GPIO3->heater GPIO4->Fresh air fan GPIO5->humidifier GPIO6->compressor */
// // HC595_Send_Byte(gpio_state &= 0xDF);//close compressor &=1101 1111 0xDF
// HC595_Send_Byte(gpio_state |= 0x04); // open heater |=0000 0100 0x04
// speed_count = 1500;
// hot_clod_flag = 2;
// pid.Iout = 0;
// } else if (pid.now_tem > pid.set_tem + pid.tem_offset - pid.tem_threshold && pid.now_tem < pid.set_tem + pid.tem_offset + pid.tem_threshold)
// {
// HC595_Send_Byte(gpio_state &= 0xFB); // close heater &=1111 1011 0xFB
// speed_count = 1000; // close compressor
// hot_clod_flag = 0;
// // pid.Iout=0;
// } else if (pid.now_tem > pid.set_tem + pid.tem_offset + pid.tem_threshold)
// {
// // Obtain the current deviation value
// // when the target temperature is lower than the actual temperature, refrigerate
// // open compressor close heater
// HC595_Send_Byte(gpio_state &= 0xFB); // close heater &=1111 1011 0xFB
// // // 0-200 correspond 0-100%, if pid.out=50, percentage means 25% //num=50*400/200=100 100/400=25%
// // num = (((pid.OUT * 400) / pid.pwmcycle) - 1); // Conversion of pid.OUT and PWM Duty Cycle Values
// // TIM_SetCompare3(TIM3, num / 4);
// // printf("%d\r\n",num);
// // HC595_Send_Byte(gpio_state|=0x20);//open compressor |=0010 0000
// hot_clod_flag = 1;
// // pid.Iout=0;
// }
set_compressor_power(speed_count);
set_heater_power(heater_percent);
// if (hot_clod_flag == 1 && T <= tem - 3) // During the refrigeration process, the actual temperature drops by 0.3 degrees Celsius below the set temperature
// {
// HC595_Send_Byte(gpio_state&=0xDB);// close compressor and heater &=1101 1011 0xDB
// // num = 0;
// // TIM_SetCompare3(TIM3, 0); // close compressor
// speed_count = 1000;
// hot_clod_flag = 0;
// }
// if (hot_clod_flag == 2 && T >= tem) // while heat, T above tem
// {
// HC595_Send_Byte(gpio_state&=0xDB);//close compressor and heater &=1101 1011 0xDB
// num = 0;
// TIM_SetCompare3(TIM3, 0); // close compressor
// hot_clod_flag = 0;
// }
// HC595_Send_Byte(gpio_state&=0xDB);// close compressor and heater &=1101 1011 0xDB
}